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Abstract— A major problem in teaching and learning 

control theory is acquiring unconventional systems thinking. 

However, using discrete-time models does not require 

infinitesimal mathematics, so building on the knowledge 

acquired at the high school level is possible. This paper aims to 

show how different discrete-time models (discrete-time 

convolution, autoregressive moving average model) can be used 

to illustrate the basic principles of control engineering and 

describe dynamic systems. With these and similar methods, the 

focus is shifted to understanding mechatronic engineering, thus 

increasing the effectiveness of the teaching. 

Keywords— discrete-time model; systems engineering; 

discrete-time convolution; autoregressive moving average model; 
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I. INTRODUCTION 

A. General trends in education 

The understanding of the principles of control theory has 
always posed difficulties for engineering students. Although 
only a few of them could apply these principles 
professionally, it did not pose a problem because relatively 
simple analog PID controllers were used in most 
applications, based on the technological level of the time. 
Since advanced controllers were rarely used, a small number 
of experts were sufficient to handle them. However, today, 
with the availability of high-capacity computers, complex 
digital regulators can be employed, necessitating a larger 
number of experts to design and implement them. In order to 
achieve this goal, the methods of teaching control theory—a 
field of applied mathematics—must be revised to enhance 
the efficiency of engineering education. 

Today, due to technological demands, the development 
of engineering education is the focus of many researchers. 
The role of immediate feedback in improving efficiency 

in teaching engineering mathematics is discussed in [1]. 
Vieira et al. present a teaching process for human-computer 
interaction, combining traditional teaching methods with 
project-based learning and active learning, using interactive 
learning materials [2]. More interactive features can be 
found [3], where they use a 3-D interactive learning 
environment for control engineering education. The 

following article uses a computer-aided animation tool [4]. 
More about interactive education can be found [5] [6] [7] [8] 
[9]. Another interesting topic is online laboratories. Vergara 
et al. write about post-Covid educational trends [10]. An 
online laboratory was used before the pandemic [11] [12]. 
Other related studies can be found [13] [14] [15]. One more 
topic is distance learning, where the impacts and challenges 
can be found in the following articles [16] [17]. 

B. The simplified goal of the classical control theory 

In preparation for an Erasmus project, we asked 
Hungarian, Slovenian, Italian, and Croatian students how 
difficult they found the knowledge of control engineering 
compared to other subjects. This research was published in 
[9]. It turned out that most of them find this knowledge more 
difficult than other subjects (Fig. 1). This may be partly 
because the mathematical and physical foundations of most 
engineering subjects (such as mechanics, thermodynamics, 
optics, electronics, and fluid mechanics) are already learned 
at primary and high school level. Although university 
education quickly moves beyond the high school level of 
knowledge and developing an appropriate engineering 
mindset is a long process, building on the mathematical and 
physical mindset developed over many years in these areas 
is possible. 

 

Fig. 1: Relative difficulty of control subjects compared to other subjects 
according to engineering students [9] 

A similar conclusion was reached by the IFAC WC 2017 
education roundtable discussion: feedback is the most 
important operation and saleable product of control theory 
and the biggest challenge to its teaching (Fig. 2). In contrast, 
the basics of control theory are currently not taught at all in 
high school, and engineering students have to deal with 
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basic attitudinal deficits, which is why this subject is 
considered difficult. Understanding feedback is also an 
important part of everyday thinking; understanding its role 
would be important for everyone, and learning the basics 
does not require a strong knowledge of mathematics, so 
there is no reason why young people should not learn about 
this topic. 

The role of laboratory measurements is crucial in 
engineering and other applied science courses, while the 
availability of instruments is limited due to time constraints 
and funding difficulties. The rapid development of 
computing and the internet has enabled remote 
measurements via the internet, and the need to increase 
efficiency has made their widespread use inevitable. Virtual 
laboratories are available, which place experimentation in a 
simulated environment [18] [19].  

 

Fig. 2. Education Round Table, IFAC World Congress 2017 

C. Structure of the paper 

The next Chapter describes the mathematical 
background of classical basic continuous time controller 
design, which we want to teach in discretet time first. In 
Chapter III, we present a thought experiment that implies the 
impulse response of a discrete-time system demonstrated in 
the form of animation. In practice, students can make 
observations (measurements) using a virtual bicycle model. 
With its generalization, we arrive at discrete-time 
convolution. Here, we recognize that we must use infinite 
series, which we try to write in closed form. Chapter IV 
compares the continuous and discrete time transfer 
functions. The continuous time transfer function is based on 
Laplace transformation and time shifting operator is 
introduced for the discrete time. In this paper, we do not deal 
with controller design, but we present the discrete-time 
version of the control theory toolset to use as a basis later 
when teaching advanced control theory. Chapter V 
concludes the paper. 

II. PROBLEM STATEMENT (CONVOLUTION INTEGRAL)  

The basic problem of classical control theory is to write 
down the Laplace operator transfer function of both the 
controlled plant ����� and the controller ����� and create 
the closed control circuit shown in Fig. 3, where �����, 
	���, 
���, and ���� are the Laplace transformed reference 
signal, output signal, error signal, and control signal, 
respectively. 

 

Fig. 3. Classical closed control loop 

In the case of continuous-time systems, it is common to 
use a closed form for the transfer function. After providing a 
brief overview of this case, we will introduce the analogous 
tools for discrete-time systems in Chapter IV. Generally, we 
are dealing with systems that can be described �-th order 
linear differential equations of form 

 �� ∙ �������
�

���
�  �� ∙ �������

�

���
, (1) 

where ���� is the input of the system and ���� is the output. 

Here, without going into the mathematical details, we 
introduce the most important concepts that become 
important in the later learning of control theory. In 
continuous time, the output (the solution of the differential 
equations) can be generated by the so-called convolution 
integral 

���� � � ��� � �� ∙ ������
�

��
     � ! 0, (2) 

where ���� is the impulse response function. The use of �0 
as a lower bound emphasizes that the history of the system 
should be taken into account with an appropriate left limit of 
the initial value at � � 0. 

If we transfer from the time domain to the Laplace domain 
with the help of the Laplace transform, then (2) the 
convolution integral is simplified to an ordinary 
multiplication 

	��� � ���� ∙ ���� (3) 

where 	���, ���� and ���� are the Laplace transforms of 
the system's output, input, and impulse response functions. 
Equation (3) provides a closed formula for the output and 
shows the importance of the impulse response function as 
well as the Laplace transform. Since the differential operator 
in the case of the Laplace transformation is an � multiplier, 
the transfer function can be written directly from (1) 

���� � 	���
���� � ∑ �� ∙ �������

∑ �� ∙ �������
 

(4) 

When designing the controller, we move from the 
Laplace operator domain to the complex frequency domain 
and design the complex frequency [20] [21] transfer 
function �$�%&� of the open loop so that the closed loop 
remains stable. 

�$�%&� � ���%&� ∙ ���%&� �5� 
During planning, of course, we can only change the 

transfer function ���%&� of the controller. 

According to the general experience of control theory 
instructors and the survey mentioned in the introduction, 
thinking in frequency or Laplace domain as well as 
understanding the essence of convolution integral, which 
justifies the use of the transfer function, requires students to 



have an abstraction. It causes significant problem for most 
students if we use the traditional teaching methods, and do 
not provide them a special way of thinking. That's why we 
decided to transform our education to create a synergy of 
subjects and, here specifically, to subordinate mathematics 
education to engineering thinking. 

Our educational hypothesis is the following: on the one 
hand, students understand phenomena and manipulations 
better in the time domain than in the frequency domain (not 
to mention the Laplace operator domain), on the other hand, 
the most difficult abstraction for them is to change from 
finite time to infinitely short time and to sum up (integrate) 
the infinitesimally small effects of events that take place in 
infinitely short time. 

As an educational innovation, we propose taking 
advantage of the closed control loop shown in Fig. 3, which 
can be represented by the impulse transfer functions 
obtained through the Z transform of sampling systems. The 
novelty lies in the fact that we introduce the pulse transfer 
function at the beginning of university studies using high 
school mathematics. To achieve this, we do not need the 
Laplace domain; instead, we utilize a simple time-shifting 
operator in the time domain. Although we do not mention 
the Z transform in this phase, we use the notation ( to 
represent the time-shifting operator, indicating the 
connection between them. We assert that understanding the 
convolutional summation in discrete time is much easier 
than comprehending the convolutional integral, which can 
also assist students in grasping the control theory of 
continuous-time systems at a later stage. 

III. USE OF DISCRETE-TIME MODELS IN PREPARATION FOR 

STUDYING CLASSICAL CONTROL THEORY 

A. Measurements through a virtual system (animation) to 

demonstrate discrete-time impulse response and 

convolution 

An example is described in detail where, due to the 
nature of the system, it is relatively easy to imagine that the 
input signal is a series of impulses. 

Suppose that a cyclist can push down on the pedal very 
quickly and thus imposes a given magnitude of impulse on 
the system consisting of the cyclist and his bicycle. Using 
measurements, form a discrete-time model where the 
discrete-time input signal �[*] is the sequence of impulses 
from pedal depression, and �[*] is the output signal, which 
is also a sequence of certain values. 

The output signal �[*] can be various, for example, the 
velocity at each discrete time or the total distance traveled 
from the start. We will see that discussing these two cases 
easily introduces the so-called Finite and Infinite Impulse 
Response systems. In the following, we use subscript ‘,’ 
when discussing the ‘velocity response’ of the system and 
subscript ‘�’ when studying the ‘distance response.’ For the 
sake of simplicity, we use unit time intervals as time steps 
and suppose SI units in our calculations and do not write 
them. 

1) Measurement: Impulse response 
Let us examine the discrete-time response of the system to a 
unit impulse. If the cyclist presses the pedal once at time 

�[0] and a unit impulse is generated, then in our example, 
we find that the velocity of the cyclist at time instants 
�[0], �[1], and �[2] is �/[0] � 3, �/[1] � 2, �/[2] � 1, 
respectively, then (at �[3]) the bicycle stops. Furthermore, 
the covered distance during the first three units of time is 3, 
2, and 1 unit; that is, the total covered distance is �1[0] �
3, �1[1] � 5, and �1[2] � 6, respectively (Fig. 4 (a)). 

  
(a) (b) 

Fig. 4: a) Effect of a unit impulse b) Effect of a pulse with the magnitude of 
two units 

Based on the measurement, the discrete-time velocity 
response �/[*] of the system to the unit pedal impulse is 

�/[0] � �/[0] � 3, 

�/[1] � �/[1] � 2, 

�/[2] � �/[2] � 1 

�/[*] � �/[*] � 0, if * > 2 

(6) 

Based on the measurement, the discrete-time distance 
response �1[*] of the system to the unit pedal impulse is 

�1[0] � �1[0] � 3, 

�1[1] � �1[1] � 5, 

�1[2] � �1[2] � 6 

�1[*] � �1[*] � 6, if * > 2 

(7) 

Suppose there exists 4 ∈ ℤ for which �[*] � 0 if * >
4, then the system is called Finite Impulse Response (FIR) 
system. Otherwise, the system is called Infinite Impulse 
Response (IIR) system. Based on (6) and (7), our system is a 
FIR system if we consider the velocity as the output, while it 
is an IIR system if the covered distance is considered to be 
the output. 

2) Measurement: Linearity of the system 
In our example, we are dealing with the motion of a 

bicycle, and we want to introduce some control theory tools 
within a simplified linear model. 

A real system can only be linear in a specific operating 
range and within a certain accuracy constraint, so the 
assumption of linearity usually implies a significant 
simplification of the system. In the bicycle example, it is 
enough to think that pushing the pedal very hard can break. 
But the cause of a bicycle slowing down is also complex, 
caused by air and rolling resistance and the friction of the 
components, of which several types are present at the same 
time. Most of these effects result in the nonlinearity of the 
system. For example, only the so-called viscous friction can 
be considered linear, which is experienced when the 
bearings of the bicycle are properly lubricated, and the 
surfaces of the connecting parts do not slide on each other 
but on the oil layer between them. Additionally, the degree 
of different deceleration effects also depends on the speed. 

Since we want to teach an analysis toolset of linear 
systems, for didactical purposes, we use a virtual bicycle 
prepared to be linear in our example. Students can do 
measurements with this system. Generally, we would need 



to perform many measurements to ‘prove’ the linearity of a 
system. In this exercise students are not required to ‘prove’ 
the linearity, they have to do only one measurement to 
‘check’ the linearity as follows. Suppose you press the pedal 
twice the force as in the first measurement. In this case, 
because of the linearity, we find that the distance traveled 
per unit of time also doubles, and after the third unit of time, 
the bicycle is no longer moving (Fig. 4 (b)). 

3) Measurement: Effect of two unit impulses 
As a first step to generalization, let us examine the effect 

of two-unit impulses with a unit time lag. 

Velocity response: the velocity of the cyclist at �[0] is 3 
due to the first pedal push, �/[0] � 1 ∙ 3, at �[1] the velocity 
is the sum of 2 due to the first pedal push and 3 due to the 
second pedal push, �/[1] � 1 ∙ 2 7 1 ∙ 3 � 5, at �[2] the 
velocity is the sum of 1 due to the first pedal push and 2 due 
to the second pedal push, �/[2] � 1 ∙ 2 7 1 ∙ 1 � 3, at �[3] 
the velocity is 1 due to the second pedal push, �/[3] � 1 ∙
1 � 1, then the bicycle stops, that is, �/[*] � 0, if * > 3. 

Distance response: till the end of the first unit of time, 
the bicycle covers a distance of �1[0] � 1 ∙ 3 due to the first 
pedal push, till the end of the second unit of time, it covers a 
distance of �1[1] � 1 ∙ 5 7 1 ∙ 3 � 8 units due to the first 
and second pedal push, till the end of the third time unit it 
covers a distance of �1[2] � 1 ∙ 6 7 1 ∙ 5 � 11 units, till the 
end of the fourth time unit it covers a distance of �1[3] � 1 ∙
6 7 1 ∙ 6 � 12 units, then the covered distance is a constant, 
�1[*] � 12, * > 3 (Fig. 5 (a)). 

  
(a) (b) 

Fig. 5: a) Effect of two unit pulses b) Effect of the discrete-time unit step 
function 

4) Measurement: Effect of the discrete-time unit step 

function 
If the cyclist presses the pedal with a unit of impulse per 

unit of time, the effect of these impulses should be summed 
over time as shown above. Velocity response: the velocity of 
the cyclist at �[0] is 3 due to the first pedal push, �/[0] � 1 ∙
3, at �[1] the velocity is the sum of 2 due to the first pedal 
push and 3 due to the second pedal push, �/[1] � 1 ∙ 2 7 1 ∙
3 � 5, at �[2] the velocity is the sum of 1 due to the first 
pedal push, 2 due to the second pedal push, and 3 due to the 
third pedal push, �/[2] � 1 ∙ 1 7 1 ∙ 2 7 1 ∙ 3 � 6, at �[3] 
the velocity is the sum of 1 due to the second pedal push, 2 
due to the third pedal push and 3 due to the fourth pedal 
push, �/[3] � 1 ∙ 1 7 1 ∙ 2 7 1 ∙ 3 � 6, then the bicycle 
travels at a constant velocity of �/[*] � 6, if * > 3. 

Distance response: till the end of the first unit of time, 
the bicycle covers a distance of �1[0] � 1 ∙ 3 due to the first 
pedal push, till the end of the second unit of time, it covers a 
distance of �1[1] � 1 ∙ 5 7 1 ∙ 3 � 8 units due to the first 
and second pedal push, till the end of the third time unit it 
covers a distance of �1[2] � 1 ∙ 6 7 1 ∙ 5 7 1 ∙ 3 � 14 units 
due to the first, second, and third pedal push, till the end of 
the fourth time unit it covers a distance of �1[3] � 1 ∙ 6 7

1 ∙ 6 7 1 ∙ 5 7 1 ∙ 3 � 20 units, then the covered distance is 
a constant, etc. (Fig. 5 (b)). 

5) Measurement: Response to an arbitrary input 
If the cyclist does not act on the system with the same 

impulse per unit of time, then the effects proportional to the 
magnitude of the impulse should be summed up with time 
delay. For example, if one leg of the cyclist is stronger and 
therefore, every second impulse is twice as large, i.e., 

�[0] � 1, �[1] � 2, �[2] � 1, �[3] � 2, . ..  
then the velocity response is  

�/[0] � 1 ∙ 3, 
�/[1] � 1 ∙ 2 7 2 ∙ 3 � 7, 

�/[2] � 1 ∙ 1 7 2 ∙ 2 7 1 ∙ 3 � 8, 
�/[3] � 2 ∙ 1 7 1 ∙ 2 7 2 ∙ 3 � 9, 

 

then velocity values 8 and 9 are alternating. The virtual 
bicycle measurements discussed above can be studied using 
the following link (available only in Hungarian): 
https://www.youtube.com/watch?v=alFZRrWkoLw 

B. Generalization of the animation 

To formalize the ideas above, let us introduce the 
function 

?[*] � @1 if * � 0
0 otherwise ,   * ∈ ℤ, (8) 

which is the representation of the unit impulse at 0. Then 
?[* � H], * ∈ ℤ is the representation of the unit impulse at 
H ∈ ℤ. The generalization of Fig. 4 (a) is shown in Fig. 6, 
where �[*] is the system response for unit impulse, ?[*]. 

The generalization of the measurement 5 is shown in 
Fig. 7. Using ?, sequence �[H] ∙ ?[4 � H], H ∈ ℤ represents 
the input impulse of magnitude �[4] at fixed 4, and for 
sequence �[4] we have decomposition 

�[4] �  �[H] ∙ ?[4 � H]
I

���I
,   4 ∈ ℤ (9) 

The response of the system to input ?[*] is the impulse 
response �[*] (Fig. 6). Therefore, the response to �[H] ∙
?[* � H], H ∈ ℤ is �[H] ∙ �[* � H], H ∈ ℤ, furthermore, 
because of the linearity, the system output for input 
�[*], * ∈ ℤ is 

�[*] �  �[H] ∙ �[* � H]
I

���I
,   * ∈ ℤ (10) 

 

Fig. 6: Discrete-time impulse response 



 

Fig. 7: Calculating the output signal with discrete time convolution 

If �[H] � 0 for all H J 0 and �[H] � 0 for all H J 0 
(causality), then (10) is equivalent to a finite sum 

�[*] �  �[H] ∙ �[* � H]
K

���
,   * ! 0 (11) 

We got the same formula we have in (11), which is 
called discrete-time convolution of discrete-time functions 
�[*] and �[*]. According to (11), the value of the output 
signal at a time instant is generated as a linear combination 
of the input signal values acting on the system in the past. 
There are no state variables in the expression, the output 
signal �[*] is determined by the function �[*] and the input 
signal �[*]. 

To illustrate the above, consider the following bicycle 
model. Let the velocity impulse response of the system be 

�/[0] � 1, �/[1] � 3, �/[2] � 2 and 

�/[*] � 0 if * > 3 
(12) 

(FIR system). Calculate the velocity response �/[*] and the 
displacement response �1[*] of the system to the discrete-
time unit step function. (The unit step function can also be 
considered as a series of discrete-time unit pulses.) 

It is clear that the (total) displacement impulse response 
of the system is 

�1[0] � 1, �1[1] � 4, and 

�1[*] � 6 if * > 1 
(13) 

Calculate values �/[*] and �1[*], * � 0,1, … ,5. 

Rows of Table I and Table II contain response functions 
�[H] ∙ �/[* � H] and �[H] ∙ �1[* � H], respectively while in 
the last rows, we have the sums of these functions that 
provide the values of the outputs �/[*] and �1[*], 
respectively.  

I. TABLE: CALCULATION OF THE VELOCITY OUTPUT AS THE CONVOLUTION 

OF INPUT AND THE IMPULSE RESPONSE 

k -1 0 1 2 3 4 5 
�[*] 0 1 1 1 1 1 1 

�[0] ∙ �/[*] 0 3 2 1 0 0 0 
�[1] ∙ �/[* � 1] 0 0 3 2 1 0 0 
�[2] ∙ �/[* � 2] 0 0 0 3 2 1 0 
�[3] ∙ �/[* � 3] 0 0 0 0 3 2 1 
�[4] ∙ �/[* � 4] 0 0 0 0 0 3 2 
�[5] ∙ �/[* � 5] 0 0 0 0 0 0 3 

�/[*] 0 3 5 6 6 6 6 

It is generally beneficial to express the impulse response 
in closed form. While obtaining the values of the impulse 
response through measurements is generally impossible, it 
becomes feasible if the differential equation of the system is 
available. 

II. TABLE: CALCULATION OF THE DISPLACEMENT OUTPUT AS THE 

CONVOLUTION OF INPUT AND THE IMPULSE RESPONSE 

k -1 0 1 2 3 4 5 
�[*] 0 1 1 1 1 1 1 

�[0] ∙ �1[*] 0 3 5 6 6 6 6 
�[1] ∙ �1[* � 1] 0 0 3 5 6 6 6 
�[2] ∙ �1[* � 2] 0 0 0 3 5 6 6 
�[3] ∙ �1[* � 3] 0 0 0 0 3 5 6 
�[4] ∙ �1[* � 4] 0 0 0 0 0 3 5 
�[5] ∙ �1[* � 5] 0 0 0 0 0 0 3 

�1[*] 0 3 8 14 20 26 32 

IV. DISCRETE-TIME TRANSFER FUNCTION FOR CLOSED 

FORM IMPULSE RESPONSE 

Our goal is to create an analog toolset for studying 
discrete-time systems. Instead of the Laplace transform, we 
use the so-called time-shifting operator. 

In the classical structure of control theory education, the 
z transform is introduced after the Laplace transform on its 
basis. Since the theory of integral transforms is too complex 
for first-year students, we need more straightforward tools to 
deal with the basics of control theory at the beginning of the 
training. For this purpose, we introduce the time-shifting 
operator and discrete-time convolution instead of Laplace 
transform and continuous-time convolution. Introducing 
time-shifting operators and discrete-time convolution 
requires only high school-level mathematics knowledge. 

The differential equation (1) can be transformed into the 
form 

 �1� ∙ �[* � H]
�

���
�  �1� ∙ �[* � H]

�

���
 (14) 

This form can be called ARMA-type formalization: the 
moving average part is a linear combination of the input 
signal's current and some past values, while the 
autoregressive part is a linear combination of the output 
signal's current and some past values. The value of the 
output signal is the difference between the moving average 
part and the autoregressive part. Establish the ARMA-type 
equation of a real system only needs the determination of 
coefficients �1�  and �1�. 

Let us introduce time shifting operator ( by 

M[* 7 1] � (M[*],   H ∈ ℤ (15) 

where M[*], * ∈ ℤ is a discrete signal. Formally, a signal 
can be shifted in time by a unit with multiplication by (. The 
operator (� represents the application of the time shifting 
operator H times, that is 

M[* 7 H] � (�M[*],   H ∈ ℤ (16) 

With the use of the time-shifting operator, (14) has the 
form 



 �1� ∙ (���[*]
�

���
�  �1� ∙ (���[*]

�

���
 (17) 

Based on this equation, the so-called discrete transfer 
function can be expressed as 

��(� � 	�(�
��(� � ∑ �1� ∙ (������

∑ �1� ∙ (������
 (18) 

	�(� � ��(���(� (19) 

(18) and (19) have the same role in discrete-time systems 
as (4) and (3) in continuous-time systems. Based on Fig. 6 
and Fig. 7, the physical content of (18) is easier to 
understand than (3). Anyway, we cannot physically imagine 
the domain of the Laplace operator in general. 

V. CONCLUSION 

Although both the description of control theory and the 
practical design are based on manipulations in the frequency 
domain and the Laplace domain, the introduction of the 
time-shifting operator and discrete-time convolution allows 
the basics of control theory to be discussed from the 
beginning of engineering education, building only on high 
school mathematics. This teaching method helps to close the 
gap between studying the theoretical foundations and the 
applications in engineering, which causes a lack of interest 
in learning mathematics at the beginning of the training and 
a lack of mathematical knowledge and difficulty in applying 
it later on. The teaching method presented relies on the 
active participation of the students. On the one hand, the 
study of the mathematical tools of discrete-time systems can 
be easily achieved through self-study and homework, and on 
the other hand, measurements and observations are made 
from the outset on a virtual system that can be modified as 
required.The basic concepts of control theory can thus be 
discussed before higher-level analysis is taught, and when 
the difficult definitions and abstract formulas appear, 
reference can be made to formulas previously written and 
understood for discrete-time systems, which look similar. 
Most students have trouble understanding abstract 
mathematics, so abstract control theory is, for the majority, 
just formulas to be learned; deeper understanding is lost. 
The study and understanding of discrete-time systems alone 
can contribute significantly to the understanding of the 
description and modeling of dynamic systems.We have been 
assigning the same task in the control engineering subject 
for many years. Our experience is that since we started 
teaching the discrete-time convolution described in the paper 
to first-year students, the average length of students' 
submissions has gradually increased because the students 
intend to provide a deeper and, therefore, more extended 
analysis of the results. 

REFERENCES 
 

[1]  D. Sipos and I. Kocsis, "Supporting the education of engineering 
mathematics using the immediate feedback method," Teaching 

Mathematics and Computer Science, 2023.  

[2]  A. Vieira, M. Filho and C. Neto, "Production and Evaluation of an 
Educational Process for Human–Computer Interaction (HCI) 
Courses," IEEE TRANSACTIONS ON EDUCATION, vol. 64, no. 2, 
pp. 172-179, 2021.  

[3]  Z. Lei, W. Hu, Q. Deng, D. Zhou, Z. Liu and X. Gao, "3-D Interactive 
Control Laboratory for Classroom Demonstration and Online 

Experimentation in Engineering Education," IEEE TRANSACTIONS 

ON EDUCATION, vol. 64, no. 3, pp. 276-282, 2021.  

[4]  P. Asef and C. Kalyvas, "Computer-Aided Teaching Using 
Animations for Engineering Curricula: A Case Study for Automotive 
Engineering Modules," IEEE TRANSACTIONS ON EDUCATION, vol. 
65, no. 2, pp. 141-149, 2022.  

[5]  M. Violante, E. Vezzetti and P. Piazzolla, "Interactive virtual 
technologies in engineering education: Why not 360° videos?," 
International Journal on Interactive Design and Manufacturing, pp. 
729-742, 2019.  

[6]  V. Fedak, P. Bauer, V. Hájek, H. Weiss, B. Davat, S. Manias, I. Nagy, 
P. Korondi, P. Miksiewicz, P. Duijsen and P. Smékal, "Interactive E-
Learning in Electrical Engineering," Proceedings of the 15th 

International Conference on Electrical Drives and Power Electronics 
(EDPE, pp. 368-373, 2003.  

[7]  Y. Cherner, J. Uhomoibhi, G. Mullett, M. Kuklja, C. Mkude, L. Fweja 
and H. Wang, "Implementation of Interactive and Adjustable Cloud-
based e-Learning Tools for 21st Century Engineering Education: 
Challenges and Prospects," IEEE World Engineering Education 

Conference (EDUNINE), 2019.  

[8]  A. ÁlvarezMarín and Á. VelázquezIturbide, "Augmented Reality and 
Engineering Education: A Systematic Review," IEEE Transactions on 

Learning Technologies, vol. 14, no. 6, pp. 817-831, 2021.  

[9]  P. Podržaj, M. Finžgar, Ž. Pirnar, S. Ljubic, M. Lanzetta, L. Pollini, P. 
Venturini, B. Pizag, A. Urbin, P. Korondi, J. Graff and C. Budai, "An 
Erasmus+ project: Interactive Course for Control Theory (ICCT)," 
47th Annual Conference of the IEEE Industrial Electronics Society, 

pp. 1-6, 2021.  

[10] D. Vergara, P. Fernández, J. Extremera, L. Dávila and M. Rubio, 
"Educational trends post COVID-19 in engineering: Virtual 
laboratories," Materials Today Proceedings, vol. 49, no. 1, pp. 155-
160, 2022.  

[11] G. Sziebig, B. Takarics and P. Korondi, "Control of an embedded 
system via internet," IEEE Transactions on Industrial Electronics, vol. 
57, no. 10, pp. 3321-3333, 2010.  

[12] G. Korsoveczki, B. Kovács, D. Tihanyi, H. Almusawi and P. Korondi, 
"IT development of a web-based laboratory system for mechatronical 
engineering students," IEEE 9th International Conference on e-
Learning in Industrial Electronics (ICELIE), pp. 1-6, 2022.  

[13] C. Monzo, G. Cobo, J. Morán, E. Santamaría and D. Garcia-
Solórzano, "Remote Laboratory for Online Engineering Education: 
The RLAB-UOC-FPGA Case Study," Electronics, vol. 10, no. 9, 
2021.  

[14] A. Beemt, S. Groothuijsen, L. Ozkan and W. Hendrix, "Remote labs in 
higher engineering education: engaging students with active learning 
pedagogy," Journal of Computing in Higher Education, 2022.  

[15] A. Luse, A. Brown and J. Rursch, "Instruction in 802.11 Technology 
in Online Virtual Labs," IEEE Transactions on Education, vol. 64, no. 
1, pp. 12-17, 2021.  

[16] M. Vallarino, S. Iacono, D. Zolezzi and V. Vercelli, "Online Peer 
Instruction on Moodle to Foster Students’ Engagement at the Time of 
COVID-19 Pandemic," IEEE Transactions on Education, vol. 65, no. 
4, pp. 628-637, 2022.  

[17] Z. Khan and M. Abid, "Distance learning in engineering education: 
Challenges and opportunities during COVID-19 pandemic crisis in 
Pakistan," International Journal of Electrical Engineering & 
Education, 2021.  

[18] C. Horváth, G. Sziebig and T. Thomessen, "Overview of modern 
teaching equipment that supports distant learning," RECENT 
INNOVATIONS IN MECHATRONICS, pp. 1-22, 2018.  

[19] M. Niitsuma, H. Hashimoto and H. Hashimoto, "Spatial memory as an 
aid system for human activity in intelligent space," IEEE Transactions 
on Industrial Electronics, vol. 54, no. 2, pp. 1122-1131, 2007.  

[20] S. Preitl and R. E. Precup, "An extension of tuning relations after 
symmetrical optimum method for PI and PID controllers," Automatica, 
vol. 35, no. 10, pp. 1731-1736, 1999.  

[21] R. E. Precup and S. Preitl, "PI and PID controllers tuning for integral-
type servo systems to ensure robust stability and controller 
robustness," Electrical Engineering, pp. 149-156, 2006.  

 
  


